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ABSTRACT 

 The estimation of design effort and cost plays a vital role in authorizing funds and 

controlling budget during the project development process. Typically, the design phase consists 

of various engineering activities that require substantial efforts in delivering final construction 

documents for bid preparation. Estimating these efforts accurately and efficiently is critical for 

transportation agencies to properly allocate funds and assign appropriate time and resources.  

 Previous studies have reported several problems associated with the estimation of design 

effort such as lack of predictive tools, inaccurate forecasts and misallocation of efforts. Thus, 

there is a need for a proactive scheme to estimate more accurate and reliable design efforts and 

costs in order improve the confidence of the design office at the negotiation table with consulting 

firms and finally enhance the accountability and transparencies of funding decisions.  

 This study develops advanced design effort and cost estimation models using multivariate 

linear regression (MLR), multivariate polynomial regression (MPR) of second degree and 

Artificial Neural Network (ANN) methods. First, the study develops a master database that 

consolidates various data points of historical pretensioned prestressed concrete beam (PPCB) 

bridge projects designed by external consultants. The master database includes data attributes 

such as bridge design attributes, various physical attributes of bridges, consultant’s proposed fees 

and workhours, Iowa Department of Transportation (DOTs) proposed fees and workhours, 

contracted fee and work hours and actual amount of fee paid after the completion of design. 

Seven MLR, MPR and ANN models have been developed to estimate design fees and work 

hours at different negotiation and design stages. Two approaches are used to predict cost and 

workhours, the first one utilized the data from bridge design attributes and the other one utilizes 

bridge design attributes along with number of various kinks of design sheets. The MLR, MPR 

and ANN models are developed using commercial prediction analytics software JMP pro.  

 The performances of all the models are evaluated by comparing the MAPE (Mean 

absolute percentage error). The MLR models did not perform well because of their inability to 

recognize non-linear patterns whereas MPR models performed slightly better due to the ability of 

recognizing some non-linearity in the data. However, ANN models are able to detect non-linear 

patterns along with interactions in the training data. The results reveal that ANN models perform 

significantly better with MAPE range of 5-13% with only bridge data attributes and MAPE range 

of 4-12% with bridge data attributes and different design sheets as inputs. 
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CHAPTER 1. INTRODUCTION 

 The estimation of design effort and cost plays a vital role in authorizing funds and 

controlling budget during the project development process. Typically, the design phase consists 

of various engineering activities that require substantial efforts in delivering final construction 

documents for bid preparation. Estimating these efforts accurately and efficiently is critical for 

transportation agencies in properly allocating funds and assigning appropriate time and 

resources. However, due to the relatively small proportion of project cost consumed by design 

service activities, “there has generally been little effort invested in improving management of 

those activities in the preconstruction phase” (Persad et al. 1995). Additionally, researchers that 

have focused on preconstruction management have reported a lack of predictive tools to estimate 

design costs (Knight and Fayek 2002, and Woldesenbet and Jeong 2012). Inaccurate forecast of 

design costs or misallocation of these efforts can result in a) increased design errors and low 

quality work leading to project delays, and increased construction costs, or b) lost opportunities 

to authorize other projects due to unrecognized over-expenditure.  

 Today, the rapid increase in the number and complexity of transportation projects has led 

agencies to accelerated project delivery, variation in workload, and overall changes in legal and 

policy requirements that necessitate specialized skills (Persad et al., 2010). To meet these 

changing project management needs, design and engineering activities are being augmented by 

private consulting firms that the agencies negotiate with before funding authorization for 

consulting agreements. Figure 1 show a typical process when a consulting company is hired for 

design and engineering by Department of Transportation (DOT). First, the DOT requests a 

proposal from the most qualified consulting company, with their selection based on the 

company’s expertise, capabilities and previous records. Then, the consulting company proposes a 

design fee and anticipated work hours based on the scope of work for the design project. The 

DOT then compares the consulting company’s proposal with their estimated costs and typically 

makes a counter offer to the consulting company, before both parties finally agree on the scope 

of work, design fee and work hours. The actual amount of design fee paid may be different from 

the contracted amount because of scope changes and actual work hours different from estimated 

work hours in the agreement. 
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TimeTime
Negotiation PeriodNegotiation Period Final Design PeriodFinal Design Period

Design Fee and 
Workhours Proposed 

by Consultant

Design Fee and 
Workhours Proposed 

by Consultant

Design Fee and 
Workhours Proposed 

by Iowa DOT

Design Fee and 
Workhours Proposed 

by Iowa DOT

Design Fee and 
Workhours agreed by  

Iowa DOT and 
Consultant

Design Fee and 
Workhours agreed by  

Iowa DOT and 
Consultant

Actual Design Fee 
paid to Consultant 

and actual workhours

Actual Design Fee 
paid to Consultant 

and actual workhours

 
Figure 1. Contracting process of design by consultant 

 Federal regulation now stipulates that a detailed independent cost estimate must be 

formed when an engineering work is requested of an external consultant. Such an estimate serves 

as an important reference point for arbitrations with the Consultant” (UDOT 2013) and must 

include “an appropriate breakdown of specific types of labor required, workhours, and an 

estimate of the consultant’s fixed fee…for use during negotiations” (23CFR Section 172.7).  

 However, the efficiency and reliability of outsourcing design services and determining 

reliable costs associated with the engineering activities have been a huge challenge since most 

highway agencies do not have a structured and well-defined procedure to reasonably estimate 

design efforts and costs. A limited number of studies in this area revealed drastic variances in 

terms of the accuracy of design cost estimates. A study done by the Washington DOT (WSDOT, 

2002) reported that the estimated design costs of a sample bridge by ASSHTO Subcommittee 

members from 25 states ranged from 4% to 20% of construction costs (WSDOT 2002). A recent 

study of 344 bridge projects constructed by the North Carolina DOT (NCDOT) found that 

preliminary engineering costs ranged from 0.04% to 138% of construction costs. A similar study 

by Kuprenas (2003) found design costs ranging from 25% to 50% while Liu et al. (2013) 

obtained 7% to 16% of the construction cost as the design costs of roadway projects. Lastly, 

Gransberg et al. (2007) found that using historic construction cost percentages for Oklahoma 

Turnpike Authority bridge projects caused consultant design fees to be underestimated in almost 

every case and resulted in statistically significant (R
2
 = 0.92) construction cost growth due to 

change orders required to correct design errors and omissions. 

 Thus, there is a need for a proactive scheme to estimate more accurate and reliable design 

efforts and costs in order to meet the federal regulations, improve the confidence of the design 

office at the negotiation table with consulting firms, and finally enhance the accountability and 

transparencies of funding decisions.  
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Motivation 

 Due several problems associated with the estimation of design effort such as lack of 

reliable predictive tools and inaccurate forecasts an effort is made to add some intellectual value 

in this domain. The data from Iowa DOT is used as a part of this study. Pretensioned Prestressed 

Concrete Bam (PPCB) bridges are the most popular kinds of bridges preferred by Iowa DOT 

(Nelson and Waterhouse 2016) and on an average 13 PPCB bridge designs are outsourced by 

Iowa DOT every year. After the financial crisis of 2007-2008, Iowa DOT experienced significant 

reduction in workforce. However, the workload has not decreased comparatively but in fact has 

increased for some time because of American Recovery and Reinvestment Act of 2009, a federal 

stimulus program. A new legislation also requires Iowa DOT to find additional funds for its 

operations to the tune of $10 million and moreover also reduce the timeframe for project delivery 

with this increasing workload (Nelson and Waterhouse 2016).  

The key motivation behind this study is to develop a need for a proactive scheme to 

estimate more accurate and reliable design efforts and costs in order to meet the federal 

regulations, improve the confidence of the design office at the negotiation table with consulting 

firms, and finally enhance the accountability and transparencies of funding decisions. The 

current system that the office of Bridges and Structures at Iowa DOT uses is based on percentage 

of construction cost to estimate the bridge design costs but the office needs to improve and 

upgrade the system to take advantage of technological advances and historical data that they 

have accumulated.  

Research Approach 

Figure 2 shows the overall research approach. First, the agreement files of PPCB design 

projects conducted by external consultants are studied and important pieces of data points for this 

study are extracted.  In addition, bridge characteristics data that are stored in the bridge 

information system (BRIS) at Iowa DOT are imported into a spreadsheet file. The master 

database consists of various data attributes for each PPCB bridge design project including 

consultant’s proposed design fee and workhours, Iowa DOT’s proposed design fee and 

workhours, contracted design fee and workhours, actual amount of design fee paid, and several 

bridge attributes. The design fees are adjusted to account for inflation and some data cleaning 

techniques are applied to address missing values and other data issues. Two estimation methods 

are developed in this research as follows: 
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 Multivariate regression - Multivariate regression is a technique which estimates a single 

regression model with more than one output variable. The word multiple is used because 

there are more than one predictor or input variables. The purpose why regression is 

chosen for this study is to formulate a relation between several predictor variables and a 

dependent variable. Furthermore, two kinds of regression multivariate linear regression 

(MLR) and multivariate polynomial regression (MPR) are used in this study to find if 

there is any linear relation between the variables in case of MLR and non-linear relation 

in case of MPR. 

 Artificial Neural Network (ANN) – Artificial neural network is a computational 

approach, which is modeled in the same way as that of a biological brain, which has large 

clusters of neurons connected by links. Similarly, the neural network is composed of 

large number of interconnected nodes to solve problems. Neural networks are used in this 

study to recognize complex patterns in terms of interactions, which is not possible in case 

of regression.   

 

Figure 2. Overall research approach 

Problem Statement 

 The literature shows that statistical tools like regression and artificial intelligence 

technique can be applied to develop a parametric estimating tool to determine bridge design 

engineering efforts and costs using historical contract data. Despite the availability of these tools, 

data-driven techniques are not ben currently used by Iowa DOT or any other agencies for that 

matter for cost prediction. 
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 The aim of this research is to demonstrate the use of tools that Iowa DOT may utilize in 

order to predict bridge design cost and efforts by data driven methods. DOT’s in other states may 

also apply the methods demonstrated to develop their own equations for prediction. The detailed 

objectives are to:  

  (1) Develop a master database to track bridge design effort and costs.  

 (2) Develop a parametric bridge design effort and cost estimation models using tools like 

Regression and Artificial Neural Network. 

 (3) Validate the developed models and tool, which would assist Iowa Department of 

Transportation in making reasonable judgements. 

Content Organization 

 Chapter 1 explains the motivation behind this study research, the research approach and 

furthermore, the problem statement for this study is summarized in this chapter. 

 Chapter 2 contains research background. To be specific, the current state of predicting 

design costs is discussed. Previous research in design cost prediction using tools like regression, 

artificial neural network and random forest will be summarized. Furthermore, the problem 

statement is also stated. 

 Chapter 3 highlights the overall approach and assumptions in data extraction. In this 

chapter the creation of a database is explained. This includes data collection methods, selecting 

input variables and predicting output variables.  

 Chapter 4 contains descriptive statistics of all the bridge projects considered as a part of 

this study. This section discusses the quantitative results of descriptive statistics applied to the 

master database of 58 PPCB bridge design projects.  

 Chapter 5 proposes an approach by incorporating bridge characteristics that could be used 

to develop multivariate regression and neural network models.  

  Chapter 6 proposes an approach by incorporating bridge characteristics and design sheet 

types to develop multivariate regression and neural network models 

 Chapter 7 summarizes the main conclusions from the papers and discusses the limitations 

of those conclusions. 

  Chapter 8 outlines the key contributions to the bridge design estimating body of 

knowledge and areas for future research.   
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CHAPTER 2. LITERATURE REVIEW 

This chapter explains the current state-of-the-practice used to estimate the preliminary 

engineering cost of projects. It then discusses the application of statistical tools like regression 

artificial intelligence tools like neural network to the field of PE cost estimation. Finally, the 

chapter poses the specific research problems investigated in this thesis.  

PE as Percentage of Construction Cost 

 Turochy et al. (2001) conducted a survey of some DOT’s in order to know about the 

procedures they followed in estimating the Preliminary Engineering (PE) costs on highway 

projects. The survey results revealed that: Delaware DOT considers project size in determining 

the procedure i.e. in case of large projects; they calculate the percentage of estimated 

construction cost & in case of smaller projects, work hours are estimated. Florida DOT applies 

percentages on construction estimates to calculate design costs. Kentucky Transportation Cabinet 

(KYTC) applies around 10% of the estimated construction cost to determine the design costs & 

furthermore, the depending on the size of the project the percentage can vary. Minnesota DOT 

has not included PE costs in calculating the cost estimate but they are planning to change the 

trend soon. Penn DOT adopts a percentage somewhere between 10% & 20% on estimated 

construction costs in determining the initial PE costs. Tennessee DOT usually applies 10% of the 

estimated construction cost to determine the PE costs. Texas DOT typically estimates the PE 

costs based on the percentage applied on estimated construction costs. Furthermore, they also 

develop estimates based on estimated ROW width. Washington State DOT also applies 

percentage on estimated construction cos to estimate PE costs. West Virginia DOT typically 

adopts 8% on estimated construction costs to determine the PE costs. To conclude, most of the 

state DOT’s usually apply percentages between 5% & 20% based on the scope & size of the 

project.   

 To analyze and compare the PE costs with construction costs, information from 25 DOTs 

was collected by Washington State DOT (WSDOT 2002). PE cost in this study was defined as 

“the work that goes into preparing a project for construction”. The participators were asked to 

identify project PE cost as a percentage of construction cost and as a result, 10.3 percent was 

found to be the average PE cost. The range was found between 4 – 20%.  
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 Virginia DOT (VDOT) developed a robust cost estimating system in 2002 (Kyte et al.). 

Based on the spreadsheet used by Fredericksburg district in Virginia, which produced reliable 

results for a particular bridge and road projects, the taskforce at VDOT, expanded this tool by 

incorporating many other project data and improved it further. Fredericksburg district was using 

this toll since 1999. With large rowing database, minor adjustments were made to refine the 

values however enhancements on this tool were made only to improve the ease of usage. 

Originally, this tool just had length, width and complexity option as inputs. In complexity, three 

sub inputs like simple, moderate and complex were provided. The output was cost per square 

foot for a bridge with particular complexity. Further enhancements by Fredericksburg district 

included estimation of PE costs for roads and bridges. Project data reveals that the PE costs 

ranged from 8% of construction costs for large projects to 20% of construction costs for small 

ones. In addition to that, inflation actor was also accounted in the database annually.  

 VDOT later in 2004 (Kyte et al.), did lots of adjustments to account this prototype for 

state wide usage like accounting for statewide cost variation, inclusion of interstates, accounting 

for consultant PE costs which are generally higher than in-house costs, bridge component 

adjustments, additional worksheets for Right-of-way (ROW) and utilities worksheets, etc. To 

estimate PE costs, a cost curve also called PE curve was derived which was the ratio of PE costs 

over construction costs. Initially the PE curve was constructed based on 30 roadway projects. 

Later, the sample was increased to 136 projects to verify the PE curve for all the districts in 

Virginia. To account for consultant PE costs, a 50% factor is applied to raise the costs over in-

house PE work. This 50% factor came from VDOT’s previous study on the costs of design 

consultants. The user can also choose the percentage of total work to be done in-house and to be 

outsourced to consultants. Similar PE cost curve was developed from a database consisting of 23 

completed bridge projects. As we see, VDOT’s PE estimating tool is not a single percentage 

based; the developed PE curve utilizes historical data based on various factors. However, it is a 

better approach compared to most of the DOTs but still it is not regression based which considers 

only significant parameters in predicting PE costs. 

Use of Statistical Analysis Techniques in PE Cost Estimation 

 It has been well known that design fees are typically calculated as a percentage of the 

construction contract value. However, the American Society of Civil Engineers (ASCE) 

discourages the use of this method to determine the design fees (Carr and Beyor 2005). Carr and 
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Beyor (2005) investigated the effects of using “outdated percentage of construction fees 

schedules” to determine design fees. The study found out that design fees were significantly 

underestimated because of the use of outdated and stagnant fee schedules. Additionally, they 

reported that there was a significant need to develop a guide for estimating appropriate design 

fees (Carr and Beyor 2005). The literature shows two cost estimating data driven methods 

multiple linear regression (MLR), artificial neural network (ANN) been demonstrated to predict 

PE costs of bridge projects and highway projects (Mahamid 2011). Multiple linear regression is 

nothing but developing a regression equation to link independent input variables to the 

dependent output variable.  

Multiple Regression Models 

 Lowe et al. (2006) tried to predict the early stage construction cost of buildings by 

developing linear regression models. The data was collected from 286 construction projects from 

the United Kingdom. Forty-one independent variables were identified for developing the model. 

The input variables were categorized as project strategic variables, site related variables and 

design related variables. They used regression to predict the log (cost), cost per unit area ($/m
2
), 

and log (cost per unit area) instead of using costs at completion of construction. The researchers 

recommended reviewing error spread in each model by analyzing the dependent variable versus 

error illustrated on scatter plots. The model performance was evaluated using R
2
 and mean 

absolute percentage error (MAPE). The best-performed regression model reported an R
2
 value of 

0.66 and MAPE of 19.3%. They reported that the models underestimated the costs of very 

expensive projects and overestimated the costs of inexpensive projects when scatter plots of 

cost/m2 were compared against error.  

 Woldesenbet and Jeong (2012) used historical data provided by Oklahoma DOT to 

estimate the preliminary engineering (PE) costs of roadway projects. This study is an example of 

data driven based prediction model for PE costs. Using data mining techniques, they identified 

influential factors that affected the PE costs and developed decision tree and regression models 

to estimate PE costs. Totally 5 major categories like project scope, geographic attributes, design 

attributes, environmental attributes and external factors were identified. 25 critical factors were 

sub-identified under these five categories, which affected PE costs. Using the regression model, 

project length was found to be the most significant factor and in case of decision tree model, 

projects type, route type and fund type was found to have a profound effect on PE costs. 
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Furthermore, the potential to predict PE cost as a function of workhours per sheet, number of 

sheets and cost per workhour was also noticed with R
2
 greater than 41.64%. However, the 

decision tree approach was found to be comparatively better than regression model in predicting 

PE costs.  

 Hollar (2012) studied on calculating estimates on PE costs and PE duration for North 

Carolina DOT’s bridge projects. In this research, the data was acquired from ten sources to form 

a database on 461 bridge projects. Twenty-eight independent variables were identified through 

correlation analysis and Analysis of Variance (ANOVA). Regression models were developed for 

PE cost ratio and PE duration. The modeling strategies like Multivariate linear regression 

(MLR), hierarchical linear models (HLM), Dirichlet process linear models (DPLM) and 

multilevel Dirichlet process linear models (MDPLM) were included in the study. For a goodness 

of fit testing, the mean absolute percentage error (MAPE) was used to rank predictive 

performance when each candidate model was applied to a validation set. The MLR model 

including eight variables achieved a MAPE of 18.9%.  

 Jianxiong (2015) developed a bottom up design hour estimation template for California 

Department of Transportation (Caltrans). This study proposed a work plan template development 

procedure to simplify the workhour estimation process. The bottom up approach is considered to 

provide a better estimation of design hours, but it is generally labor intensive. Turner and Miller 

(2015) developed regression models to estimate PE costs. The researchers used project length, 

project duration, level of environmental review and whether or not the project is administered by 

Virginia DOT to develop the regression models. Initially, only construction cost was used to 

develop regression models. Later on, other project characteristics were added, which reduced the 

mean percentage error of estimation from 134% to 44%. 

 New York DOT has developed a MS Access based tool to search projects with given 

characteristics (Williams et al. 2013). Historical data from past 64 NYSDOT projects were 

collected for regression analysis. The regression model was developed to predict the design 

hours based on the following project characteristics: 

1. Complexity, 

2. Project type, 

3. Number of sub-consultants, 

4. Construction costs, 
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5. Number of lanes, 

6. Number of plan sheets, 

7. State Environmental Quality Review (SEQR) classification, 

8. National Environmental Policy Act (NEPA) classification, 

9. Predominant bridge type, 

10. Number of bridges, 

11. Highway classification, and 

12. Length of project. 

 

 Due to insufficient data, the above project characteristics apart from 3-6 and 12 were not 

included in the analysis. Separate regression models were developed for in-house project designs 

by NYSDOT and outsourced project designs by private consultants. For consultant data, the 

simple linear regression model developed to predict workhours based on construction cost had an 

R
2
 value of 0.689 and a multi linear regression model developed to predict workhours based on 

no. of plan sheets, no. of lanes and length had an R
2
 value of 0.628. Backward regression 

technique was used to remove the insignificant input variables i.e. variables which had least 

affected the R
2
 value were considered insignificant. In this study, the total number of design 

sheets were considered in analysis. In reality, the no. of design sheets consists of standard design 

sheets, modified design sheets and new design sheets. Furthermore, the designer need not 

completely design new sheet in case of standard sheets and modified sheets and may put less 

effort in designing them and more hours in designing a complete new sheet. Hence, this issue 

was not addressed while developing this estimating tool, which could have made a better model. 

 The Iowa DOT developed a multivariate regression model in order to estimate the hours 

of a PPCB bridge design project based on a database that included following parameters: Length, 

Width, Number of spans, No of beams, Horizontal curve, Design Methodology, Span 

arrangement, Pier type, Expansion joint type, Skew, Construction staging, Abutment type, 

Abutment foundation type, and Beam type (Nelson and Waterhouse 2016). The regression model 

was developed based on the historical data of 45 projects constructed between 2000 and 2015. 

The prediction of design hours used the following parameters as significant variables;  

a) Number of spans, b) Standard span arrangement, c) Pier type, d) Expansion joint type,  

e) Skew, and f) Construction staging.  

 



www.manaraa.com

19 

 

19 

 Using the above-mentioned parameters, the tool predicted the expected, lower 95%, and 

upper 95% estimates for the bridge design hours. However, the tool needed to be enhanced by 

considering other factors such as bridge aesthetics, deep foundation type, accelerated bridge 

construction, deck area, and barrier rail type (Nelson and Waterhouse 2016).  

Artificial Neural Network 

 Another popular approach is called the artificial neural network (ANN). As the name 

states the neural network is inspired by that of brain’s neuron. This is an approach where human 

intelligence is incorporated into machine to perform complex analysis. In the case of ANN there 

is no need of presuming that a link exists between the input and output variables (Kim et al. 

2004). By creating layers of arbitrary data, the input variables are transformed into output 

variables. The data from past projects is used to train the model, which develops relationships 

within the database to predict the output variables. Finally, the trained model is used to predict 

output variable by recognizing patterns in the trained data. 

 Researchers have been applying ANN in wide areas of construction applications since 

early 80’s. In civil engineering, the first paper in neural networks was published in                                                             

1989 (Adeli, 2001). (Flood, 2006) stated that, ANNs have proven to be more flexible and precise 

for academic researches and some practical applications. Furthermore, (Flood, 2006) also 

challenged researchers to produce a convincing model for prediction in the future. 

  Louisiana DOT developed artificial neural network (ANN) to predict conceptual 

highway construction cost based on cost indexes (Wilmot and Cheng 2003). The cost index 

involved composite measure of material, labor, equipment, contract characteristics and contract 

environment. The developed ANN model predicted the construction costs with 95% level of 

accuracy (Wilmot and Cheng 2003).   

 A framework was developed in 2006 in Egypt to train and test artificial neural network in 

predicting estimates for concrete activities (Ezeldin and Shahara 2006). An attempt was made to 

identify the influential parameters in concrete activities and based on input parameters a 

prediction model was developed. The outcome of this research was that the identified influential 

factors demonstrated a reasonable improvement in predicting the future values. 

 Gransberg et al. (2015) developed a holistic framework which included both top-down 

and bottom-up approaches based on case studies performed in nine state DOTs. This study 

published a national guidebook on estimation of preconstruction services costs which describes a 



www.manaraa.com

20 

 

20 

systematic step-by-step process of developing Preconstruction Services cost estimating models 

with data driven approaches such as Multivariate regression modeling, decision tree analysis and 

neural network. The report recommended a top-down approach for estimating Preconstruction 

costs (PCS) costs during the planning phase when the project information is very limited and a 

bottom-up approach during the detailed design stage when a work breakdown structure is 

available at each functional level. Furthermore, the need of maintaining and updating a PCS cost 

database has been strongly emphasized to continuously improve the estimation results, which 

would reduce project cost uncertainties. 

 Many researchers have developed data-driven models with reliable results using both 

Regression and Neural Network. In 1987, Bell and Ghazanfer developed a cost estimation model 

for highway maintenance project with data from 174 projects (Bell and Ghazanfer 1987). This 

cost model had an average error of 17% when tried against testing data. A neural network model 

was developed by Creese and Li in 1995 to predict the construction cost of timber bridges with 

an error of 8.24%. Kim et. al (2004) compared case based reasoning, multiple regression and 

neural network to analyze performance by extracting data from 530 projects. The error for 

regression model was 7% and 3% for neural network models.   
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CHAPTER 3. DATA EXTRACTION, PROCESSING AND VALIDATION 

Data Extraction 

Available Data Sources 

 The data available for PPCB bridge design effort estimation model development is from 

three different sources: 

1. Bridge Information System (BRIS) data 

2. Design Fee Data and Workhours data  

3. Agreement files 

 Bridge Information System (BRIS) is a database of bridge projects in the Iowa DOT’s 

computer system that is accessible from within the Iowa DOT only. This database comprises 

bridge characteristics of all kinds of bridges, which have been let by Iowa DOT. The categories 

of bridge data attributes in the BRIS database are shown in Table 1.  

Table 1. BRIS Bridge data attribute categories 

Bridge General Information Bridge Misc. Information Bridge Bearing Description 

Bridge Location Bridge Work Description Bridge Abutments Description 

Bridge Geometrical Features Bridge Deck Description Bridge Piers Description 

Bridge Design Method Bridge Joints Description Bridge Aesthetics Description 

Bridge Misc. Features Bridge Beams Description  

  

 Design Fee and Workhours data includes proposed design fee and workhours by 

consultant, design fee and workhours by Iowa DOT, contracted design fee and workhours. In this 

study, the total design fee without contingency has been considered for estimation model 

development. Another spreadsheet file in this data source comprises billing data and actual 

amount paid to the consultant. This gives information about the actual design fee received to date 

by the consultant. 

 

 Agreement Files consist of contract documents related to a particular project. These files 

have data, which includes the scope of work, itemized engineering hours and design fee, which 

has detailed breakdown of direct labor costs, overhead costs, direct expense, contingency and sub 

consultant expenses.  
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Data Extraction Assumptions 

Assumptions made during the data extraction from the agreement files are below: 

a) Multi-bridge fees – In case of Multi Bridge projects encountered in agreement files or fee 

data sheets (excel files); the fees are split proportionately based on the available workhours 

data. For example, individual workhours for each lane are not available as shown in Figure 3. 

 
Figure 3. Non-availability of individual workhours 

The Fee data for this particular contract is merged together for both lanes in North and 

South direction. For these kinds of projects with same design characteristics, the design fee 

and workhours are split into equal ratios (50:50) for both lanes. 

𝑊𝑜𝑟𝑘ℎ𝑜𝑢𝑟𝑠 =
1409

2
= 704.5 ℎ𝑜𝑢𝑟𝑠  

𝐷𝑒𝑠𝑖𝑔𝑛 𝐹𝑒𝑒 =
$147,530.61

2
= $73,765.31   

Another example with a different case is for those projects, which have itemized workhours 

for each lane as shown in Figure 4. 

 

 
Figure 4. Availability of individual workhours 

 

 

The workhours and Design Fee for I-35 SB Median are calculated as follows: 
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𝑊𝑜𝑟𝑘ℎ𝑜𝑢𝑟𝑠 =
320

436+962+320+688
∗ 2592 = 345 ℎ𝑜𝑢𝑟𝑠  

𝐷𝑒𝑠𝑖𝑔𝑛 𝐹𝑒𝑒 =
345

2592
∗ $270,165 = $35,932.36  

 

b) Increased fee resulting from the change of scope is not included in the database. 

c) Only one record from each BRIS table is used to develop the preliminary database for 

modeling. For example, Project No. ESIMX-035-1(105)33--1S-20 represents a project that is 

repeated twice in the BRIS datasheet for east bound and west bound which has the same 

attributes apart from lane direction. In these cases, only one lane is considered because all the 

technical specifications are identical and it would just be duplication of data.  

d) If the project has missing data for consultant/Iowa DOT’s proposed workhours and design 

fee, the actual fee paid is assumed as consultant/ Iowa DOT’s proposed fee. Furthermore, the 

corresponding workhours have been interpolated based on the contract hours. 

e) If the data for actual fee paid is missing, the contracted design fee is assumed to be the same 

as actual fee paid. 

f) If the percentage of design completion is greater than 90% and the actual fee paid to date is 

less than the contract amount, then the adjusted actual fee paid is assumed to be the same as 

the contract amount as shown in Table 2. Adjusted actual fee paid is a value assigned in place 

of actual fee paid for design projects, which have not been completed. 

g) If the actual fee paid to date is higher than the contract amount with the design close to 

completion (> 90%); the adjusted actual fee paid to date is considered the same as actual fee 

paid as shown in Table 2. 

Table 2. Adjusted actual fee paid example 

Contract Fee Actual Fee Paid Adjusted Actual Fee Paid Design Percentage Completion 

$131,012.30 $125,202.00 $131,012.30 99% 

$216,979.93 $235,515.00 $235,515.00 96.90% 
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Data Processing  

Missing Value Imputation 

 Some data attributes have missing values and most of them are filled using reasonable 

assumptions. Missing values in one or more fields will make the entire record of a bridge design 

project unusable when developing estimation models such as regression models or neural 

networks. As such, it is important to fill those missing values to retain the highest possible 

number of records. Missing value imputations are conducted using the following rules: 

 No construction staging if the number of construction stages is zero. 

 Feature crossed field is assumed based on the “Over” field. The “Over” field contains the 

following attributes: creeks, rivers, roads, multiple and railroad. 

 Route type is determined based on the route number (Interstate, US, or Iowa) stored in 

project number. 

 Bridges with a blank “bridge width variable” record are assumed to have a constant 

bridge width. 

 Number of spans is calculated based on the count of span lengths field. 

 Number of piers is calculated as number of spans minus one. 

 Bridges with a blank “sidewalk” record are assumed to have no sidewalk. 

 Bridges with a blank “Aesthetic items” record are assumed to have no aesthetic items. 

 Number of aesthetic items is counted and added as a separate field as the number of 

aesthetic items. 

Exclusion of Attributes 

 Based on the questionnaire survey responses and the availability of the data, the 

following attributes are excluded: 

 Design specification parameter because the majority of PPCB bridges are designed by using 

LRFD 

 Bridge out to out width because of missing data 

 Number of abutments because of missing data 

 Deck reinforcement type because of missing data 

 Beam description because of missing data 
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 Abutment foundation because the majority of the bridges have piles except one bridge that 

has a drilled shaft 

 Pile type because of missing data 

 Outside/inside rail because of missing data 

 Work complexity and urgency because almost all PPCB design projects in the database have 

the same value and differences in values were negligible. 

Outlier Detection and Exclusion 

 A modified z-score, which is calculated, based on the median absolute deviation (MAD) 

and median of a dataset is used to find outliers of data points (Iglewicz and Hoaglin 1993). The 

modified z-score is calculated as shows in equation (1): 

       𝑀𝑖 =
0.6745𝑥𝑖−(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑀𝐴𝐷
        (1) 

 Where 𝑋𝑖 is the observation value, �̅� is the median, and MAD is the absolute difference 

between the median of data and observation value. As noted by Iglewicz and Hoaglin (1993), 

modified z-scores that are greater than 3.5 are considered as outliers. As such, seven projects are 

removed based on the criteria.  

Inflation Adjustment 

 Available projects for analysis are spread from 2008 to 2016. Thus, design fees need to 

be adjusted for inflation. In this study, all the design fees are adjusted to 2015 dollars. In order to 

make that adjustment, the Consumer Price Index (CPI) is used. Table 3 shows the CPI indexes 

obtained from the Bureau of Labor and Statistics (2016).  

Table 3. Consumer price indexes (Bureau of Labor and Statistics 2016) 

Year CPI 

2008 215.303 

2009 214.537 

2010 218.056 

2011 224.939 

2012 229.594 

2013 232.957 

2014 236.736 

2015 237.017 

2016 237.855 
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Questionnaire Survey Results 

 A short questionnaire is distributed to three bridge design experts in Iowa DOT to 

determine the level of importance of the bridge attributes on design efforts and costs. 

Respondents are first asked to indicate whether the attribute is well known, somewhat known or 

unknown before receiving a consultant’s proposal. The respondents reported that most attributes 

are quite well known before the final design starts except for the following two attributes; a) 

Abutment: Abutment Pile Type and b) Pier: Pile Type. Thus, these attributes are excluded from 

design effort estimation model development. 

 In addition, respondents are asked to assign a level of importance score on a scale of one 

to three where one has the lowest effect on design fee and three has the highest effect. The 

responses of this question are summarized in Table 4. As shown in Table 4, these experts believe 

that type of work, number of construction stages, bridge width variable, number of piers and pier 

type are the most influential factors on design fee and workhours, which appear to be in the list 

along with some other significant attributes as derived from polynomial regression models in 

Chapter 5.  

 

Table 4. Summary of the questionnaire survey responses 

Attribute Response #1 Response #2 Response #3 Total score 

Type of work 3 3 3 9 

Number of construction stages 3 3 3 9 

Bridge width variable 3 3 3 9 

Number of piers 3 3 3 9 

Pier type 3 3 3 9 

Number of spans 2 3 3 8 

Beam spacing variable 3 3 2 8 

Bridge length 1 3 3 7 

Aesthetic item 3 2 2 7 

Aesthetic description 3 2 2 7 

Horizontal curve radius 1 or 3 3 3 7 

Skew 2 2 2 6 

Sidewalk 2 2 2 6 

Joint expansion type 2 2 2 6 

Abutment type 2 2 2 6 

Abutment foundation 2 2 2 6 
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Table 4. (Continued) 

Attribute Response #1 Response #2 Response #3 Total score 

Foundation type - 3 2 5 

Feature crossed 2 2 1 5 

Bridge width 1 2 2 5 

Bridge out to out width 1 2 2 5 

Number of beam lines 1 2 2 5 

Beam type 1 1 3 5 

Route 2 1 1 4 

Span lengths 1 1 2 4 

Beam spacing 1 2 1 4 

Design load parameters 

(LRFD, LFD, and WSD) 
1 1 1 3 

Vertical curve type 1 1 1 3 

Number of abutments 1 1 1 3 

Rail – inside and outside - left 

and right 
1 1 1 3 

Deck reinforcement type 1 1 1 3 

Beam description 1 1 1 3 

Abutment pile type 1 1 1 3 

Pier foundation 2 
  

2 

Pile type 1 1 1 3 

Data Validation 

 To validate the models, fifteen percent of the available data, (i.e. eight records), are kept 

for testing purposes. The performances of the MLR, MPR and ANN models are evaluated by 

calculating the mean absolute percentage error (MAPE) that is measured with equation given 

below. 

𝑀𝐴𝑃𝐸 = (
100

𝑛
) ∑ |

𝑃𝑖 − 𝐴𝑖

𝐴𝑖
|

𝑛

𝑖=1

 

 Where, n is the number of testing data-points, 𝑃𝑖 is the predicted design fee or 

engineering workhours, 𝐴𝑖 is the actual design fee or engineering workhours.  
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CHAPTER 4. DESCRIPTIVE STATISTICS AND DATA 

TRANSFORMATION 

 This section discusses the quantitative results of descriptive statistics applied to the 

master database of 58 PPCB bridge design projects. The descriptive statistics results are based on 

the assumption that all other attributes related to bridge design remain constant apart from the 

attributes, which are compared. Another technically important issue is that most of the data 

attributes used to describe bridge properties are string and text data, which make the use of 

regression models inapplicable. For example, the abutment type attribute is described as integral 

abutment or stub abutment. As such, it is necessary that string attributes need to be converted to 

categorical attributes by comparing the average contracted design fee for each category for 

regression analysis. For example, the average contracted design fee for projects with integral 

abutment (category 0), is $93,651.50 while the average contracted design fee for projects with 

stub abutment (category 1), is $153,299.20. Similarly, string attributes are converted using the 

same method. In some cases, some categories have very similar average fees and hence 

combined in one category. However, beam type and construction staging attributes are 

categorized based on the beam type requirement (PPCB bulb Tee beam vs non-tee beams) and 

application of construction staging. Furthermore, pier types are categorized based on the average 

contract value of bridges. 

 Figures 5 shows the average contract values of bridge design for new structures and 

replacement structures. The interpretations have been made from 47 replacement structure 

projects and 11 new structure projects. The results show that type of work does have a small 

impact on the average contract values as the average design cost of new structures are 12.4% 

above the average cost of replacement structures. In this case, the replacement structures have 

been assigned with binary 0 to group them in one category and new structures have been 

assigned with binary 1 to group them in another category.  
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Figure 5. Type of work categories and impact on average contract value 

Figures 6 shows the average contract values of bridge design for various route types. Of 

the 58 projects, 33 have been designed on interstate and 25 have been designed on US highways 

and Iowa roads. Route type significantly affects the average contract values as bridges designed 

on Interstate cost comparatively higher by 16%-39% when compared to bridges designed on US 

Highways and Iowa Roads respectively. Although, the difference between average design fees 

for bridges built on US Highways and Iowa Roads is found to be relatively high (20%) which is 

attributed to 2 expensive projects on US Highways and 1 economical project on Iowa road. If 

these 3 projects are removed, then the difference between the average contract values of bridges 

is only 4% and hence, they have been assigned the same variable (0).  

 

Figure 6. Route type categories and impact on average contract value 

 Figure 7 shows the average contract values of bridge design with constant and variable 

widths. Totally, 54 projects have been designed with constant bridge widths and 4 have been 

designed with variable bridge widths. A bridge with variable width can increase the average 

design fee up to 56% compared to bridges with constant widths.  
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Figure 7. Bridge width variability and impact on average contract value 

 Figure 8 shows the average contract values of bridge design with and without horizontal 

curvature. The interpretations have been made from 48 bridge designs with no horizontal curves 

and 10 bridge designs with horizontal curves. A bridge with horizontal curve would increase 

design fees by 57% on average compared to bridges with no curves. Hence, width variability and 

horizontal curves may play an important factor in driving the average bridge design fee.  

 

Figure 8. Horizontal curvature requirement and impact on average contract value 

 Figure 9 shows the average contract values of bridge designs with 55 projects having 

constant beam spacing and 3 projects with variable beam spacing. Variable beam spacing can 

pose a significant impact on bridge design fee as bridges with variable beam spacing can 

increase the design fees by 71% compared to bridge design with constant beam spacing. This 

deviation can be attributed to the complexity in design as the average workhours for bridges 

designed with variable beam spacing are 55% higher than bridges designed with constant beam 

spacing.  
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Figure 9. Beam spacing variability and impact on average contract value 

 Figure 10 shows the average contract values of bridge designs with 50 projects designed 

without any sidewalks and 8 projects having sidewalks on either sides or both. Having sidewalks 

on the bridge can increase the design fees by 15% compared to bridges having no sidewalks 

because the average engineering hours for designing bridges with sidewalks is 1098 workhours 

compared to 913 workhours for bridges designed without sidewalks. Hence, beam spacing and 

sidewalks poses a significant impact on bridge design fee.  

 

Figure 10. Sidewalk requirement and impact on average contract value 

 Figure 11 shows the average contract values of bridge design with different kinds of 

beams. The interpretations have been made by grouping 49 projects under bulb tee Beam design 

category and 9 projects under non-bulb tee beam design category. The average contract value of 

bridges designed with bulb-tee beams is found to be higher than 40% when compared with 

average contract value of bridges designed with non-bulb tee beams. As seen from figure, the 

average contract value of PPCB bulb tee C beam bridge is less than PPCB D beam bridges. This 

reduction is attributed to 2 economical PPCB bulb tee C beam bridges and if these two bridges 
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are removed, the average comes around $90,000. Since there isn’t much difference between the 

average contract values of bulb-tee beams, they have been assigned with the same variable (1), 

and the other beams have been grouped with the variable (0).  

 

Figure 11. Beam type requirement and impact on average contract value 

 Figure 12 shows the average contract values of bridge design with different pier types. 

The inferences have been made from 4 designs with bent pile type, 30 designs with frame pier, 

15 designs with T-pier, 6 designs with solid concrete diaphragm and 3 designs with no piers. 

When compared with bridges designed with bent pile and T pier, bridge designs with frame pier, 

solid concrete diaphragm and no piers can increase design fee up by 39%. It is found that bridges 

with no piers have higher design fees when compared to other projects with different pier types. 

The reason why bridge design with no piers is very high is probably because these three projects 

with no piers have been designed on interstates with Bulb Tee beams and horizontal curvature. In 

case of bent pile and T pier, all the bridges have been designed without horizontal curvature, 

having constant bridge width and constant beam spacing, which might have drastically reduced 

the average design fee. Thus, pier type poses a large impact on the average bridge design fees. 

Furthermore, bent pile & T-pier are merged with the same variable (0) due to small difference in 

average contracted design fee and the others are merged with variable (1).   
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Figure 12. Pier type requirement and impact on average contract value 

 Figure 13 shows the average contract values of bridge design with 7 projects under stub 

abutment category and 51 projects under integral abutment categories. Bridges with stub 

abutments can increase the design fees by 64% compared to bridges with integral abutments. 

Hence, the type of abutment may have a considerable impact on bridge design fee.  

 

Figure 13. Abutment type requirement and impact on average contract value 

 Figure 14 shows the average contract values of bridge designs with and without staging. 

Totally, 49 projects have been designed with no staging at all and 9 projects have been designed 

with staging. It appears that construction staging has a small impact on average bridge design 

fees. Having staging in bridge design can increase the costs by 21% compared to bridges with no 

staging. It is important to note that all the project having construction staging have been designed 

with PPCB bulb Tee beams and furthermore, 67% of the projects with staging have been 

designed with either frame pier or solid concrete diaphragm, which may be additional factors, 

which have increased the average design fee.  
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Figure 14. Construction staging requirement and impact on average contract value 

  

 Figure 15 shows the average contract values of bridge designs with and without aesthetic 

items. Totally, 34 projects have been designed with no aesthetic items at all and 24 projects have 

been designed with aesthetic items. It appears that aesthetic items have a small impact on 

average bridge design fees. Having aesthetic items in bridge design can increase the average 

design costs by 8% compared to bridges with no aesthetic items.  

 

Figure 15. Aesthetic items requirement and impact on average contract value 
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CHAPTER 5. BRIDGE DESIGN ESTIMATION USING DESIGN 

ATTRIBUTES  

Multivariate Linear Regression (MLR) 

 Linear Regression is an approach in which a relationship is modeled between a 

dependable variable and an independent variable. In case of multiple regression, a relationship is 

modeled between several independent variables and a dependent variable. In design effort 

estimation, the dependent variables predicted are design fees or workhours. Independent 

variables are design parameters and bridge characteristics. A linear regression model is 

represented as shown in equation (2).  

Estimated Design Fee/workhours = 𝐼 + 𝑉1 x 𝐶1  + 𝑉2 x 𝐶2  + 𝑉3 x 𝐶3 + ⋯ + 𝑉𝑛 x 𝐶𝑛    (2) 

Where;  
𝐼 = Intercept;  

 𝑉𝑖= i
th

 input variable; 

 𝐶𝑖= Coefficient with respect to i
th

 input variable; 

 n= Number of input variables. 

 If the coefficient associated with a corresponding variable is positive, then the Design 

Fee/workhours increases with the increase in value of the corresponding variable. Similarly, if 

the coefficient of an input variable is negative, then the Design Fee/workhours decreases with the 

increase in value of the variable. In estimating bridge design fee/workhours, the input variables 

have to be in the numerical form, as multiple regression cannot use categorical variables as input 

data. Conversion of categorical data into numerical data is described in the previous sections of 

the report. In total, seven models are developed for four different types of design fees and three 

different types of workhours as shown below in Table 5. 

Table 5. Multivariate linear regression models 

Design Fee Estimation Models Workhour Estimation Models 

- Design Fee Proposed by the Consultant - Workhours Proposed by the Consultant 

- Design Fee Proposed by Iowa DOT - Workhours Proposed by Iowa DOT 

- Contracted Design Fee - Contract Workhours 

- Actual Design Fee paid  

 

 Various data mining tools are available for developing regression models. In this study, 

the Microsoft data-mining client for Excel is used to develop regression models. Once a 
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preliminary model is developed, the model is then optimized by discarding the input/independent 

variables one by one starting with a variable with the highest p-value. The final model consists of 

statistically significant independent variables with p-values less than 0.05. A p-value less than 

0.05 means that the independent variable has a significant impact on the dependent variable to 

the tune of 95%. Any p-value less than 0.05 is considered acceptable in the model. The adjusted 

R-squared value is used to measure the performance of a regression model developed. The 

adjusted R-squared value ranges from 0% to 100%. If the value gets closer to 1, that indicates the 

model explains the data better. The adjusted R-squared value increases only if the addition of a 

new input/independent variable improves the performance of the existing model.  

Design Fee Proposed by Consultant 

 The regression model developed for estimating consultant’s proposed fee is provided in 

Equation (3) below. The significantly variables are shown in Table 6.  The adjusted R-squared 

value of 69% is obtained for the model, which indicates that independent variables in this model 

can explain variability between the independent variables and the dependent variable up to 69% 

with an MAPE of 34%. 

 

Y= 24,791.72 +98,339.90(B) +34,806.64(C) +4.70(D) +40,635.16(F) -25,976.39(O)     (3) 

Table 6. Significant attributes for consultant’s proposed design fee (MLR) 

 

      

 

 

 

Workhours Proposed by Consultant 

 The regression model developed for estimating work hours proposed by consultant is 

presented in equation (4) and Table 7 shows the statistically significant variables. The adjusted 

R-squared value of 69% is obtained for this model with an MAPE of 31%. 

 

Y= 523.44 +323.14(A) +689.12(B) +0.02(D) +374.01(F) +123.68(G) +200.34(J)          (4) 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

D Bridge area 

F Horizontal curve requirement 

O Pier type 
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Table 7. Significant attributes for consultant’s proposed design workhours (MLR) 

 

 

 

 

 

 

Design Fee Proposed by Iowa DOT 

 The regression model developed for estimating the design fee proposed by Iowa DOT is 

given in Equation (5). The independent variables shown in Table 8 are found to be significant 

and the adjusted R-squared value of 72% is obtained for this model with an MAPE of 25%.  

 

Y= 38,899.70+112,380.96(B) +3.15(D) +11,819.08(G)                                                              (5)                             

Table 8. Significant attributes for Iowa DOTs proposed design fee (MLR) 

 

 

 

 

Workhours Proposed by Iowa DOT 

 The regression model developed for estimating the design fee proposed by Iowa DOT is 

given in Equation (6). The independent variables shown in Table 9 are found to be significant. 

By comparing Table 8 and 9, the significant variables for both estimation models are found to be 

the same. The adjusted R-squared value of 67% is obtained for this model with an MAPE of 

21%. 

 

Y= 442.24 +923.30(B) +0.02(D) +112.36(G)                                                                                 (6)   

 

 

 

 

Symbol Significant Attributes 

A Abutment type 

B Beam spacing variability 

D Bridge area 

F Horizontal curve requirement 

G Number of construction stages 

J Sidewalk requirement 

Symbol Significant Attributes 

B Beam spacing variability 

D Bridge area 

G Number of construction stages 
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Table 9. Significant attributes for Iowa DOTs proposed design workhours (MLR) 

Symbol Significant Attributes 

B Beam spacing variability 

D Bridge area 

G Number of construction stages 

 

Contracted Design Fee 

 The regression model developed for estimating the contracted amount of design fee is 

provided in Equation (7) with its statistically significant variables in Table 10. The adjusted R-

squared value of 71% is obtained for this model with an MAPE of 31%. 

 

Y= 10,096.86 +60,480.42(B) +23,615.73(C) +2.60(D) +39,996.58(F) +9,386.75(I)       (7) 
 

Table 10. Significant attributes for contracted fee (MLR) 

 

 

 

 

 

Contracted Workhours 

 The regression model developed for estimating the contracted amount of designed fee is 

provided in Equation (8) with its statistically significant variables in Table 11. The adjusted R-

squared value of 70% is obtained for the model with an MAPE of 32%. In addition to the 

attributes in Table 10, number of different spans is an additional attribute, which is found to be 

significant for contracted workhours. 

 

Y= 231.39 +446.79(B) +261.06(C) +0.017(D) +371.82(F) -83.80(H) +149.66(I)           (8) 

Table 11. Significant attributes for contracted workhours (MLR) 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

D Bridge area 

 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

D Bridge area 

F Horizontal curve requirement 

I Number of piers 
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Table 11. (Continued) 

Symbol Significant Attributes 

F Horizontal curve requirement 

H Number of different spans 

I Number of piers 

 

Actual Fee Paid 

 The regression model for estimating the actual amount of design fee paid to consultant is 

provided in Equation (9) with its significant variables explained in Table 12. The adjusted R-

squared value of 72% is obtained for this model with an MAPE of 32%. 

 

Y= 5,164.36 +41,033.15(B) +29,953.34(C) +2.77(D) +28,144.07(F) +11,125.43(I)  (9) 

Table 12. Significant attributes for actual fee paid (MLR) 

 

 

 

 

 

Summary 

 Table 13 shows the summary of significant attributes of linear regression models 

developed in this study. In this study, only 58 projects are considered in model development. It is 

inferred that beam spacing variability and bridge area are the most common significant attributes 

derived from these linear regression models. Furthermore, the adjusted R-squared values of all 

models are between 67-72%, which indicates that this method does not explain the variability of 

remaining 28-33% of the available data. This can be attributed to the lack of ability to track non-

linear relation in the data by linear regression. 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type  

D Bridge area 

F Horizontal curve requirement 

I Number of piers 
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Table 13. Significant attributes for MLR models 

 
 

Multivariate Polynomial Regression (MPR) 

 A polynomial term i.e. quadratic (squared) or cubic (cubed) transforms a linear regression 

model into a curve. The choice of degree and the evaluation of quality of fit solely depend on the 

judgement of the analyst. The powers of input variables are added to the equation in order to see 

if it increases R-square significantly. In this study 2
nd

 degree, term was only considered in the 

regression equation. Before going ahead with polynomial regression, plots of cost/workhours vs 

bridge length and width were analyzed and a need of switching towards second degree was felt. 

Hence, polynomial regression models were developed. A polynomial regression model of second 

degree is represented as shown in equation (10).  

  
Estimated Design Fee workhours⁄

= 𝐼 + 𝑉1 x 𝐶1  + 𝑉1
2 x 𝐶2  + 𝑉2 x 𝐶3 + 𝑉2

2 x 𝐶4 … + 𝑉𝑛
𝑘  x 𝐶𝑛                             (10) 

Where;  
𝐼 = Intercept;  

 𝑉𝑖= i
th

 input variable; 

 𝐶𝑖= Coefficient with respect to i
th

 input variable; 

 K= order of the equation; 

 n= Number of input variables 

Design Fee Proposed by Consultant 

 The regression model developed for estimating consultant’s proposed fee is provided in 

Equation (11) below. The significantly variables are shown in Table 14.  The adjusted R-squared 

value of 75% is obtained for the model, which indicates that independent variables in this model 

Actual

Sl No. Significant Attributes & Symbol Fee Work Hours Fee Work Hours Fee Work Hours Fee

1 Abutment type (A) P

2 Beam spacing variability (B) P P P P P P P

3 Beam type requirement (C) P P P P

4 Bridge Area(D) P P P P P P P

5 Bridge width variability (E)

6 Horizontal curve requirement(F) P P P P P

7 Number of construction stages(G) P P P

8 Number of different spans(H) P

9 Number of piers(I) P P P

10 Pier type requirement (O) P

11 Sidewalk requirement(J) P

Adj. R-squared Values 69% 69% 72% 67% 71% 70% 72%

Mean absolute percentage error 34% 31% 25% 21% 31% 32% 32%

Standard Error $30,769 262 $24,107 221 $23,924 206 $23,116

Consultant Iowa DOT Contract
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can explain variability between the independent variables and the dependent variable up to 75% 

with an MAPE of 38%. 

 

Y= 29,889.65 -96,177.49(B) +24,982.49(C) +31,438.13(F) +5,885.34(G-0.3) (G-0.3) -
8,175.95(H-2.38) (H-2.38) +11,502.96(I-2.24) (I-2.24) +209.64(K) -22,808.44(O)       (11) 

Table 14. Significant attributes for consultant’s proposed design fee (MPR) 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

F Horizontal curve requirement 

G Number of construction stages 

H Number of different spans  

I Number of piers 

K Bridge length 

O Pier type 

 

Workhours Proposed by Consultant 

 The regression model developed for estimating work hours proposed by consultant is 

presented in equation (12) and Table 15 shows the statistically significant variables. The adjusted 

R-squared value of 78% is obtained for this model with an MAPE of 27%. By comparing Table 

14 and Table 15, the significant variables for both estimation models are found to be the same. 

 

Y= 321.85 +700.06(B) +195.90(C) +335.33(F) -397.73(G) +240.46(G-0.3) (G-0.3) -
77.05(H-2.38) (H-2.38) +110.08(I-2.24) (I-2.24) +1.75(K) -165.37(O)                              (12) 

Table 15. Significant attributes for consultant’s proposed design workhours (MPR) 

 

 

 

 

 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

F Horizontal curve requirement 

G Number of construction stages 

H Number of different spans  

I Number of piers 

K Bridge length 

O Pier type 
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Design Fee Proposed by Iowa DOT 

 The regression model developed for estimating the design fee proposed by Iowa DOT is 

given in Equation (13). The independent variables shown in Table 16 are found to be significant 

and the adjusted R-squared value of 77% is obtained for this model with an MAPE of 25%.  

 

Y= 39,392.2 +111,767.02(B) +6,670.81(G-0.3) (G-0.3) -5,131.30(H-2.38) (H-2.38) 
+8,829.01(K-300.44) (K-300.44) +8,829.01(I-2.24) (I-2.24) +132.99(K)                          (13)                             

Table 16.  Significant attributes for Iowa DOTs proposed design fee (MPR) 

 

 

 

 
 

Workhours Proposed by Iowa DOT 

 The regression model developed for estimating the design fee proposed by Iowa DOT is 

given in Equation (14). The independent variables shown in Table 17 are found to be significant. 

The adjusted R-squared value of 72% is obtained for this model with an MAPE of 22%. 

 

Y= 457.50 +748.05(B) +195.34(F) +68.93(G-0.3) (G-0.3) -47.41(H-2.38) (H-2.38) 
+1.03(K) +0.0033(K-300.44) (K-300.44)                                                                                       (14) 

Table 17. Significant attributes for Iowa DOTs proposed design workhours (MPR) 

 

 

 
 
 

Contracted Design Fee 

 The regression model developed for estimating the contracted amount of design fee is 

given in Equation (15) with its statistically significant variables in Table 18. The adjusted R-

squared value of 87% is obtained for this model with an MAPE of 17%. 

Symbol Significant Attributes 

B Beam spacing variability 

G Number of construction stages 

H Number of different spans  

I Number of piers 

K Bridge length 

Symbol Significant Attributes 

B Beam spacing variability 

F Horizontal curve requirement 

G Number of construction stages 

H Number of different spans  

K Bridge length 
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Y= -1957.32 -31,548.10(A) +56,608.87(B) +26,359.64(C) -21,946.80(E) +44,483.82(F) -

36,708.10(G) +17,752.73(G-0.3)(G-0.3) -7,284.43(H) -14,204.30(H-2.38)(H-2.38) +191.44(K) 

+0.96(K-300.44)(K-300.44) +686.59(L) -40.05(L-49)(L-49) +15,761.55(M)                        (15) 

Table 18. Significant attributes for contracted fee (MPR) 

Symbol Significant Attributes 

A Abutment type 

B Beam spacing variability 

C Beam type 

E Bridge width variability 

F Horizontal curve requirement 

G Number of construction stages 

H Number of different spans  

K Bridge length 

L Bridge width 

M Type of work 

 

Contracted Workhours 

 The regression model developed for estimating the contracted amount of designed fee is 

provided in Equation (16) with its statistically significant variables in Table 19. This model is 

found to be the best performing one as the adjusted R-squared value of 82% is obtained for the 

model with an MAPE of 16%.  

 

Y= 337.77 -262.64(A) +394.51(B) +196.17(C) +367.78(F) -363.59(G) +182.99(G-0.3) 
(G-0.3) -82.57(H) -107.85(H-2.38) (H-2.38) +1.78(K) +0.0073(K-300.44) (K-300.44) (16)   
                               

Table 19. Significant attributes for contracted workhours (MPR) 

 

 

 

 

 

 

 

Symbol Significant Attributes 

A Abutment type 

B Beam spacing variability 

C Beam type 

F Horizontal curve requirement 

G Number of construction stages 

H Number of different spans  

K Bridge length 
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Actual Fee Paid 

 The regression model for estimating the actual amount of design fee paid to consultant is 

provided in Equation (17) with its significant variables explained in Table 20. The adjusted R-

squared value of 81% is obtained for this model with an MAPE of 24%. 

 

Y= -2,316.94 +45,660.39(B) +26,827.17(C) +27,203.83(F) -8,175.42(H-2.38) (H-2.38) 
+152.88(K) +0.57(K-300.44) (K-300.44) +677.09(L) -33.51(L-49) (L-49)                         (17) 

Table 20. Significant attributes for actual fee paid (MPR) 

 

 

 

 

 

Summary 

 Table 21 shows the summary of significant attributes of polynomial regression models 

developed in this study. In this study, only 58 projects are considered in model development. It is 

inferred that beam spacing variability, bridge length and number of different spans are the most 

common significant attributes derived from these polynomial regression models. Furthermore, 

the adjusted R-squared values of all models are between 72-87%, which indicates that this model 

does not explain the variability of remaining 13-27% of the available data. The improvement in 

adj. R squared vales is due to the non-linear relationship between input and output variables and 

polynomial regression can account for this relationship, which cannot be possible by linear 

regression.  

 

Symbol Significant Attributes 

B Beam spacing variability 

C Beam type 

F Horizontal curve requirement 

H Number of different spans  

K Bridge length 

L Bridge width 
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Table 21. Significant attributes for MPR models 

 

Artificial Neural Network 

 Artificial Neural Network (ANN) is defined as a heuristic learning technique that aims at 

finding non-linear patterns and relationship between inputs and outputs by using a training 

dataset (Hsu et al. 1995). The technique has been used in the construction industry for the past 

two decades. For example, Hegazy and Ayed (1998) as well as Adeli and Wu (1998) used the 

ANN to estimate highway projects costs. Berry and Linoff (1997) defined neural network as a 

powerful tool for the purpose of prediction, classification and clustering sometimes termed it as 

mysterious “black boxes” for internal workings. 

 Figure 16 shows the main components of ANN. Typically; ANN consists of an input 

layer, a hidden layer(s), and an output layer. Additionally, each layer consists of a number of 

neurons that are assigned with different values during the training phase. As the number of 

neurons increase, the trained ANN is expected to perform better by reducing the prediction error. 

However, increasing the number of neurons may cause an overfitting problem. This means that 

even when the percentage error within the training dataset is very small, the percentage errors 

will be very large when new data is introduced to make predictions. As such, it is important to 

hold a portion of the data and use them as a testing dataset to measure the percentage error in 

prediction and ensure that the trained ANN is not over fitted. In this research, 15% of data points 

are used for testing while the other 85% are used for training.  

Actual

Sl No. Significant Attributes & Symbol Fee Work Hours Fee Work Hours Fee Work Hours Fee

1 Abutment type (A) P P

2 Beam spacing variability (B) P P P P P P P

3 Beam type requirement (C) P P P P P

4 Bridge width variability (E) P

5 Horizontal curve requirement (F) P P P P P P

6 Number of construction stages (G) P P P

7 Number of construction stages square (GG) P P P P P P

8 Number of different spans (H) P P

9 Number of different spans square (HH) P P P P P P P

10 Number of piers square (II) P P P

11 Bridge Length (K) P P P P P P P

12 Bridge Length square (KK) P P P P

13 Bridge width (L) P P

14 Bridge width square (LL) P P

15 Type of work (M) P

16 Pier type requirement (O) P P

Adj. R-squared Values 75% 78% 77% 72% 87% 82% 81%

Mean absolute percentage error 38% 27% 25% 22% 17% 16% 24%

Standard Error $27,537 220 $21,755 206 $16,170 158 $19,147

Consultant Iowa DOT Contract
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Figure 16. Typical neural network configuration 

 Just like MLR models, seven ANN models are developed to estimate the design fees and 

work hours. The following sixteen input variables are used for developing ANN models. 

 Bridge length 

 number of different spans 

 type of work 

 route type 

 skew 

 sidewalk requirement 

 abutment type 

 pier type 

 bridge width 

 number of piers 

 number of construction stages 

 bridge width variability 

 beam spacing variable 

 horizontal curvature 

 beam type 

 number of aesthetic items 

 It is worth noting that ANN can deal with any type of variables and hence no data 

transformation is needed. The ANN models are capable of showing complex input and output 

non-linear relationships (Young II et al., 2008). Initially, the input nodes capture the information. 

The captured information then is converted to a form, which could be numerically 

communicated. The captured information is expressed in terms of activation values where in 

each node is given a number; higher the number greater would be the activation. Later, this 

information is passed on through the network and based on connection strengths (weights), 

transfer functions (linear, sigmoid, Gaussian), the activation value is passed on from node to 
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node. Every single node then sums up the activation values and modifies the value based on the 

transfer function. Through the hidden layers, the activation value flows through the whole 

network until it reaches the output node. The error i.e. difference between actual and predicted 

output will be promulgated back to each node based on the weights assigned to each node, which 

it would be liable for (Saed Sayad 2016). The neural networks are classified into fed-forward and 

feedback networks.   

 The hidden node ration or the number of neurons in the hidden layer is an important 

parameter that should be tuned in order to improve the performance of the neural network. In this 

study, ANN models are trained by using a hidden node ratio of eight since it achieved better 

performance than models with other ratios. The activation functions used were linear, TanH 

(Hyperbolic) and Gaussian while tuning the hidden layer structure. When training a new ANN, 

users are recommended to tune the activation functions until the best performance is reached. 

The commercial software tool used is predictive analytics software called JMP Pro developed by 

SAS institute. More information regarding JMP Pro is found through this link 

<http://www.jmp.com/support/help/Neural_Networks.shtml>.  

Design Fee Proposed by Consultant 

 The results of ANN model developed for estimating consultant’s proposed fee are shown 

below in Table 22. In the case of consultant’s proposed fee, the R
2
 value is found to be 60% for 

the validation data with MAPE error of 13%.  

Table 22. ANN model results: Consultant’s proposed fee 

 

Workhours Proposed by Consultant 

 The results of ANN model developed for estimating consultant’s proposed fee are shown 

below in Table 23. In the case of consultant proposed workhours, the R
2
 value for the validation 

data is found to be 54% with MAPE error of 11%. 

Measures Training data Validation data

Rsquare 0.90 0.60

Standard Error $17,993.37 $16,438.85

MAPE Error 13%

Consultant's proposed fee

http://www.jmp.com/support/help/Neural_Networks.shtml
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Table 23. ANN model results: Consultant’s proposed workhours 

 

Design Fee Proposed by Iowa DOT 

 The results of ANN model developed for estimating Iowa DOTs counter-proposed fee are 

shown below in Table 24. In the case of Iowa DOTs counter-proposed fee, the R
2
 value for 

validation data is found to be 68% with MAPE error of 6%. 

Table 24. ANN model results: Iowa DOTs counter proposed fee 

 

Workhours Proposed by Iowa DOT 

 The results of ANN model developed for estimating Iowa DOTs counter-proposed 

workhours are shown below in Table 25. In the case of Iowa DOTs counter-proposed workhours, 

the R
2
 value for validation data is found to be 48% with MAPE error of 6%. 

Table 25. ANN model results: Iowa DOTs counter proposed workhours 

 

Contracted Design Fee 

 The results of ANN model developed for estimating contracted fee are shown below in 

Table 26. In the case of contracted fee, the R
2
 value for validation data is found to be 66% with 

MAPE error of 9%. 

Measures Training data Validation data

Rsquare 0.65 0.54

Standard Error 283.04 127.81

MAPE Error 11%

Consultant's proposed workhours

Measures Training data Validation data

Rsquare 0.97 0.68

Standard Error $8,762.48 $7,189.49

MAPE Error 6%

Iowa DOTs counter proposed fee

Measures Training data Validation data

Rsquare 0.99 0.48

Standard Error 34.24 60.35

MAPE Error 6%

Iowa DOTs counter proposed workhours
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Table 26. ANN model results: Contracted fee 

 

Contracted Design Workhours 

 The results of ANN model developed for estimating contracted workhours are shown 

below in Table 27. In the case of contracted workhours, the R
2
 value for validation data is found 

to be 61% with MAPE error of 7%. 

 

Table 27. ANN model results: Contracted workhours 

 

Actual Fee Paid 

 The results of ANN model developed for estimating actual fee paid are shown below in 

Table 28. In the case of actual fee paid, the R
2
 value for validation data is found to be 67% with 

MAPE error of 5%.  

Table 28. ANN model results: Actual fee paid 

 

Summary 

 The results from the developed ANN model are shown in Table 29 below. As seen 

below, the MAPE errors from all the seven models are within 14% with R
2
 vales greater than 

74% 

Measures Training data Validation data

Rsquare 0.87 0.66

Standard Error $16,137.81 $9,882.95

MAPE Error 9%

Contracted fee

Measures Training data Validation data

Rsquare 0.95 0.61

Standard Error 82.90 74.79

MAPE Error 7%

Contracted workhours

Measures Training data Validation data

Rsquare 0.44 0.67

Standard Error $32,638.52 $5,236.31

MAPE Error 5%

Actual fee paid
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Table 29. ANN model results using bridge design attributes 

 

Conclusion 

 As seen from Table 30, for estimation using bridge design attributes, the MPR regression 

models performs better in estimating the consultant’s proposed workhours, contracted design fee, 

contracted design workhours and actual paid fee. In estimating the consultant’s proposed fee, 

there is no significant difference between the two regression models. However, the MLR model 

performs better in estimating the Iowa DOTs proposed fee and workhours. Furthermore, if the 

standard error values and adjusted R-squared values are compared, then MPR outperforms MLR 

in all the seven prediction models. ANN models, on the other hand perform significantly better 

than MLR and MPR approaches by a huge margin because ANNs can model nonlinear 

relationships as well as interactions between the variables.  

 

Table 30. MAPE for all MLR, MPR and ANN models 

 MLR  MPR  ANN  

Consultant’s proposed fee 34% 38% 13% 

Consultant’s proposed workhours 31% 27% 11% 

Iowa DOTs proposed fee 25% 25% 6% 

Iowa DOTs proposed workhours 21% 22% 6% 

Contracted design fee 31% 17% 9% 

Contracted workhours  32% 16% 7% 

Actual paid design fee 32% 24% 5% 

 

 

 

 

 

 

 

Actual

Sl No. Parameters Fee Work Hours Fee Work Hours Fee Work Hours Fee

1 R-squared Values - Validation 90% 65% 97% 99% 87% 95% 44%

2 R-squared Values - Training 60% 54% 68% 48% 66% 61% 67%

Mean absolute percentage error 13% 11% 6% 6% 9% 7% 5%

Consultant Iowa DOT Contract
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CHAPTER 6. BRIDGE DESIGN ESTIMATION USING DESIGN 

ATTRIBUTES AND DESIGN SHEETS 

 Another approach to predict bridge design cost and workhours is carried out which had 

additional input variables in terms of design sheets. The design sheets are sub divided into 

standard design sheets, modified design sheets and new design sheets. The standard design 

sheets contain pre-engineered details for many structural components like sound walls, 

underground structures, earth retaining systems etc. Hence, the usage of such standard design 

sheets directly reduces the efforts in detaining for specific types of bridges i.e. PPCB bridges in 

this study. When any kind of modification is made to the standard design sheet, it becomes a 

modified sheet. Usually, the number of modifications on a design sheet is clearly indicated in the 

design sheet. Example for some modified sheets is abutment details, superstructure details, beam 

details etc. This modification would require more effort when compared to standard design sheet. 

The last one is the new design sheet in which the detailer would put in maximum effort as it 

requires starting from scratch like slab elevations, situation plans, slab reinforcing layout, pier 

details etc. Hence, new design sheets consume maximum efforts in bridge design. Not much is 

done in the past regarding these differences in design sheets hence, an effort was made to see if 

this difference in design sheets would help in improving the performance of models in a better 

way.  

 Initially, the trials are carried out using MLR but it is found that none of the number of 

standard sheets, modified sheets and new sheets is statistically significant in all the models apart 

from consultant workhours model and actual cost model. Furthermore, the MAPE error did not 

improve significantly as desired for these two models. Later, the trials are performed using 

multivariate polynomial regression with second degree. The MPR models did not perform better 

and had high MAPE error compared to the previous approach in all the models apart from 

contract cost model and contract workhours model. The MAPE error in these two models again 

did not improve significantly as desired. Hence, additional data of number of standard, modified 

and new sheets did not reveal better results using MLR and MPR approach. Finally, the trails are 

carried out using artificial neural network and the results found are comparatively better than the 

previous approach of just using bridge characteristics as input variables. The analysis is carried 

out using a commercial tool called JMP Pro and number of layers, hidden node ratio, learning 

rate and other activation functions are kept same as previously explained in chapter 6.  
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Design Fee Proposed by Consultant 

 The results of ANN model developed for estimating consultant’s proposed fee are shown 

below in Table 31. In the case of consultant’s proposed fee, the R
2
 value is found to be 79% for 

the validation data with MAPE error of 12%. 

Table 31. ANN model results: Consultant’s proposed fee 

 

Workhours Proposed by Consultant 

 The results of ANN model developed for estimating consultant’s proposed fee are shown 

below in Table 32. In the case of consultant proposed workhours, the R
2
 value for the validation 

data is found to be 71% with MAPE error of 10%. 

Table 32. ANN model results: Consultant’s proposed workhours 

 

Design Fee Proposed by Iowa DOT 

 The results of ANN model developed for estimating Iowa DOTs counter-proposed fee are 

shown below in Table 33. In the case of Iowa DOTs counter-proposed fee, the R
2
 value for 

validation data is found to be 85% with MAPE error of 5%. 

Table 33. ANN model results: Iowa DOTs counter proposed fee 

 
 

Measures Training data Validation data

Rsquare 0.90 0.79

Standard Error $17,901.05 $12,811.31

MAPE Error 12%

Consultant's proposed fee

Measures Training data Validation data

Rsquare 0.87 0.71

Standard Error 169.59 112.42

MAPE Error 10%

Consultant's proposed workhours

Measures Training data Validation data

Rsquare 0.95 0.85

Standard Error $11,054.85 $5,427.10

MAPE Error 5%

Iowa DOTs counter proposed fee



www.manaraa.com

53 

 

53 

Workhours Proposed by Iowa DOT 

 The results of ANN model developed for estimating Iowa DOTs counter-proposed 

workhours are shown below in Table 34. In the case of Iowa DOTs counter-proposed workhours, 

the R
2
 value for validation data is found to be 84% with MAPE error of 4%. 

Table 34. ANN model results: Iowa DOTs counter proposed workhours 

 

Contracted Design Fee 

 The results of ANN model developed for estimating contracted fee are shown below in 

Table 35. In the case of contracted fee, the R
2
 value for validation data is found to be 84% with 

MAPE error of 7%. 

Table 35. ANN model results: Contracted fee 

 

Contracted Design Workhours 

 The results of ANN model developed for estimating contracted workhours are shown 

below in Table 36. In the case of contracted workhours, the R
2
 value for validation data is found 

to be 75% with MAPE error of 6%. 

Table 36. ANN model results: Contracted workhours 

 
  

Measures Training data Validation data

Rsquare 0.75 0.84

Standard Error 198.37 37.53

MAPE Error 4%

Iowa DOTs counter proposed workhours

Measures Training data Validation data

Rsquare 0.93 0.84

Standard Error $11,861.87 $8,523.91

MAPE Error 7%

Contracted fee

Measures Training data Validation data

Rsquare 0.97 0.75

Standard Error 69.85 76.40

MAPE Error 6%

Contracted workhours
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Actual Fee Paid 

 The results of ANN model developed for estimating actual fee paid are shown below in 

Table 37. In the case of actual fee paid, the R
2
 value for validation data is found to be 77% with 

MAPE error of 5%.  

Table 37. ANN model results: Actual fee paid 

 

Summary 

 The results from the developed ANN model are shown in Table 38. As seen below, the 

MAPE errors from all the seven models are within 12% with R
2
 vales greater than 71%.  

Table 38. ANN model results using bridge design attributes and design sheets 

 

Conclusion 

 In this approach by adding three types of design sheets along with bridge data attributes, 

MLR and MPR models does not have design sheets as significant variables in most of the 

models. This only means that there is no significant linear or even a non-linear relation between 

different kinds of design sheets when plotted against design cost and workhours. The ANN 

models on the other hand perform slightly better when compared to ANN models in the previous 

approach by just using bridge data attributes. The improved performance in ANN can be 

attributed to complex interactions between number of design sheets and bridge attributes when 

plotted against design cost and workhours. However, the only impediment in this approach is the 

prediction of standard, modified and new sheets along with bridge data attributes. This 

impediment can be circumvented by comparing similar projects in the past and professional 

judgments in order to predict the number of different kinds of design sheets to be produced for a 

new bridge project. 

Measures Training data Validation data

Rsquare 0.78 0.77

Standard Error $20,240.72 $7,048.79

MAPE Error 5%

Actual fee paid

Actual

Sl No. Parameters Fee Work Hours Fee Work Hours Fee Work Hours Fee

1 R-squared Values - Validation 90% 87% 85% 84% 93% 75% 77%

2 R-squared Values - Training 79% 71% 95% 75% 84% 97% 78%

Mean absolute percentage error 12% 10% 5% 4% 7% 6% 5%

Consultant Iowa DOT Contract
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CHAPTER 7. CONSOLIDATED CONCLUSIONS AND LIMITATIONS 

Conclusions 

 This section presents the main findings from Chapters 5 and 6. Chapter 5 presents a 

method to estimate bridge design efforts and workhours by using only design attributes as input 

variables.  

 For estimation using bridge design attributes, the MPR regression models performs 

comparatively better in estimating design costs and workhours when compared with 

MLR regression models. Furthermore, if the standard error values and adjusted R-

squared values are compared, MPR outperforms MLR in all the seven prediction models.  

 ANN models, on the other hand performs significantly better than MLR and MPR 

approaches by a huge margin due to the fact that ANNs can model nonlinear relationships 

as well as interactions between the variables which is not possible by MLR and MPR. 

The MAPE values reported for validation projects range from 21-34% in MLR models, 16-38% 

in MPR models and 5-13% in case of ANN models. 

 

Chapter 6 presents a method to estimate bridge design efforts and workhours by using design 

attributes and the number of various types of design sheets as input variables.  

 Adding three types of design sheets (standard, modifies and new sheets) along with 

bridge data attributes, MLR and MPR models does not have design sheets as significant 

variables in most of the models which means that there is no significant linear or even a 

non-linear relation between different kinds of design sheets when plotted against design 

cost and workhours.  

 The ANN models on the other hand perform slightly better when compared to ANN 

models in the previous approach by just using bridge data attributes. The MAPE values 

range from 4-12% for ANN models. The improved performance in ANN can be 

attributed to complex interactions between number of design sheets and bridge attributes 

when plotted against design cost and workhours.  

 

 In this study, only 50 data points are used for training regression and ANN models. The 

small size of the data points might be the main reason for the poor performance of regression 

models. The reason why the models did not perform well in case of linear regression is because 
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in case of regression, the data is modeled by a straight-line function, which is not the case very 

often, and hence it does not recognize any non-linearity between the attributes. However, the 

polynomial regression models perform better than linear regression models because polynomial 

regression extends the linear regression to fit some general non-linear functions but it does not fit 

categorical variables with interactions. Overall it appears that neural network perform 

significantly better in predicting bridge design efforts and cost as it can model nonlinear 

relationships as well as interactions between the variables.  

It is expected that the performance of all the models will continue to improve if the 

number of data points for training increases as the training algorithm will be able to detect and 

fine-tune the relationships between the inputs and outputs more accurately in the future. This 

leads to the conclusion that ANN models are well suited for use in model development for bridge 

design efforts and cost estimation as they can be trained easily without any conversion from 

categorical inputs to numerical inputs which can be laborious for any new data to be entered in 

the future and hence, it is recommended for use in bridge design efforts and cost prediction.  

Limitations 

 Every research study has some limitations. It must be stressed that the developed models 

are valid only within the data in which they were trained. To add a few more limitations, if Iowa 

DOT plans to use this model in the future, the models can only be applicable to bridge projects 

designed by the firms/consultants considered in the training data.  

 Furthermore, the models developed are sensitive to the design techniques. The models 

cannot be used to predict bridge design costs if there is any change in the method of design. 

 To make the predictions more reliable, the models have to be updated frequently so that 

the database expands and performance of the model improves which is also supported by 

literature studies (Setyawati et al. 2002, Tatari and Kucukvar 2010, Gunduz et al. 2011).  
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CHAPTER 8. CONTRIBUTIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

Contributions 

 Chapter 2 provides the foundation for this research as it summarizes the current practices 

in various agencies in estimating PE costs. Chapter 3 determines the bridge characteristics by a 

questionnaire survey, which assisted in predetermining attributes before detailed design process 

starts. Sixteen bridge attributes are selected based on score of importance, which serves as input 

for prediction modeling. This research presents a case for estimating bridge design efforts and 

work hours for PPCB bridge projects. Chapter 5 and 6 presents popular predicting tools like 

regression and neural networks, which are utilized as a part of this research. Two approaches like 

bridge design attributes and design attributes with number of different types design sheets are 

applied to develop and compare the performance of predictions. The results indicate that the 

performance of ANN models is found to be better in all the approaches with fewer hassles in 

data transformation.  

 In this study, a major attempt is made to include different types of design sheets and 

number of various types of design sheets like standard sheets, modified sheets and new sheets.  

Most of the bridge designed by consultants in this study have work break down hours for each 

design sheets submitted by them. When the workhours of a new bridge project are to be 

estimated, the DOT can compare similar projects from the past data and estimate the number of 

standard, modified and new sheets, which will be prepared by the consultant for the new project. 

Later, during the process of negotiation DOT can have a good idea as to how many new sheets 

would be prepared by the consultant and based on the complexity of the project and the 

workhours allotted for each type of design sheet, the new contract workhours can be well 

negotiated as standard and modified sheets would not require the same number of workhours 

when compared to designing new sheets.  

Recommendations for Future Research 

 The major observation with the historic bridge workhours data is that most of this data, 

which is derived from consultants, which is used in training the model is not uniform in terms of 

designation and expertise of engineers involved in designing the project. In this study, the 

models were prepared by collecting the bridge data from 14 different consultants. The problem 
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with this method is of assumption that all 14 firms use the same software’s, same approach and 

same experience of engineers for all the projects, which may not be true. The effort should be 

made in standardizing the data as much as possible, which can be possible by segregating the 

projects, by individual firms to bring some uniformity in terms of team set up because no matter 

how sophisticated the tools are but finally, the designs are analyzed by humans. The models by 

this method would be expected to perform a lot better as the training data is more standardized 

and can be utilized to deal with the particular firm. 

An approach recommended by Craigie (2015) is to estimate bridge design costs and 

workhours using a “bottom-up” approach in other words a CSBS (Cost and scope breakdown 

structure). The CSBS is basically a spreadsheet, listing preconstruction tasks specific to different 

departments to which work hours are assigned. In this bottom up approach also called as 

functional level estimate the design tasks are divided into work breakdown structure (WBS) 

which are then grouped into various packages. This approach provides a methodological 

classification of work tasks which can be clearly identified and efficiently managed.  

When this same CSBS approach be applied for an individual firm taking its historical 

data into consideration, the performance of the model would probably be better. The only issue 

with this is the availability of enough data of an individual firm for a specific kind of bridge 

within a DOT. The only way this issue can be tackled is by having collaboration with various 

DOTs in collecting data for a particular firm and for a specific kind of bridge as firms work for 

many DOTs nationwide. This way plenty of projects can be included in the data base for 

prediction modeling.  
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